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Abstract
We investigate the quantum transport of electrons, phase solitons, etc, through
the mesoscopic networks of zero-dimensional quantum dots. Straight and
circular ladders are chosen as networks with each coupled with three semi-
infinite leads (with one incoming and the other two outgoing). Two transmission
probabilities as functions of the incident energy ε show a transition from anti-
phase aperiodic to degenerate periodic spectra at the critical energy εc which
is determined by a bifurcation point of the bulk energy dispersions. TPs of
the circular ladder depend only on the parity of the winding number. The
introduction of a single missing bond (MB) or missing step doubles the period
of the periodic spectra at ε > εc. Shift of the MB by a lattice constant results
in a striking switching effect at ε < εc. In the presence of the electric-field-
induced spin–orbit interaction (SOI), an obvious spin filtering occurs for the
spin-unpolarized injection. For the spin-polarized injection, on the other hand,
the spin transport shows spin-flip (magnetization reversal) oscillations with
respect to SOI. We also show a role of soliton in the context of its transport
through the ladder networks.

PACS numbers: 03.75.−b, 05.45.−a, 05.60.Gg.

1. Introduction

Recently there has been a growing interest in quantum transport in discrete physical systems
characterized by networks with nontrivial topologies [1, 2]. Those networks mimic the
networks of nonlinear waveguides and optical fibers [3], Bose–Einstein condensates in optical
lattices [4], superconducting ladders of Josephson junctions [5], double helix of DNA, etc. In
these networks, their topology and the presence of a few embedded defects are expected to
play a vital role in controlling the macroscopic quantum transport such as a switching of the
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Figure 1. Straight ladder with three leads.

network current. Here, the main interest lies in the networks connecting lattice points discrete
everywhere [6, 7] in contrast to another topical works on quantum graphs which are composed
of connected continuous linear segments of finite length [2].

On the other hand, with the introduction of the nonlinearity to the time-dependent
Schrödinger equation, the network provides a nice playground where solitons propagate in
a complicated way until escaping through the attached semi-infinite leads. While nonlinear
dynamics with the use of the nonlinear Schrödinger equation would not be very important
in the microscopic electronic transport, it certainly plays a role in the macroscopic quantum
transport [4, 5]. There already exists an accumulation of studies of the soliton propagation
through the discrete chain, and its collision with small defect clusters [8]. However, little work
has been done on the soliton transport through the big networks with and without defects.

In this paper we investigate the quantum transport of electrons or phase solitons through
mesoscopic networks of zero-dimensional quantum dots. Typically, straight and circular
ladders are chosen as model networks with each being coupled with three semi-infinite leads
(with one incoming and the other two outgoing). Below we shall systematically study the
following questions: (1) Is there any universal feature of quantum transport in the case of
open big ladders? (2) Can a single defect bond introduced into big ladders play a crucial role
in quantum transport? (3) In the context of spintronics, can open ladders which incorporate
Rashba spin–orbit interaction (SOI) play a prominent role of the spin-filtering?

In section 2, based on the discrete cubic nonlinear Schrödinger equation, we examine a fate
of the soliton coming from the incoming lead and propagating through the above networks in
a complicated way until escaping through the three semi-infinite leads. The two transmission
probabilities (TPs) based on a soliton picture are evaluated and compared with the result
of Landauer formula based on the (stationary and discrete) linear Schrödinger equation. The
following sections are based on the standard (linear) quantum mechanics. In section 3, TPs are
explored as functions of the incident energy, and the characteristic features of the transmission
spectra are found. In section 4, we shall elucidate a radical change of the transmission spectra
by introducing a single defect bond into the network. The role of topology in the transport
through the circular ladder is also studied in this section. Finally in section 5, the electric-
field-induced SOI (i.e. Rashba interaction) is introduced to the network. Then we investigate
the result of spin transport (STP) through the networks and indicate its role in magnetization
oscillations and spin filtering. Summary and discussion are devoted to section 6.

2. Model networks and discrete nonlinear Schrödinger equation

As a challenge to analyze general big networks, we choose two type of networks, straight
and circular ladders (see figures 1 and 2), which mimic the Josephson junction or double

2



J. Phys. A: Math. Theor. 43 (2010) 145101 K Nakamura et al

Figure 2. Circular ladder with three leads.

helix of DNA. Each system consists of an array of zero-dimensional quantum dots (i.e. lattice
sites), where the central part represents a network and the external three lines stand for the
attached semi-infinite leads. All lattice points are numbered in the way given in figures 1
and 2. In figure 1, for example, the incoming lead (left) is connected with the ladder at
the site m and a pair of outgoing leads (right) are connected with it at the sites m + 2n and
m + 2n + 1. Suppressing three external leads, the ladder includes 2n + 2 lattice sites and n − 1
steps (perpendicular to the ladder). The wavefunction comes through the incoming lead (�in),
collides with the network, and is partly reflected through the incoming lead (�ref) and partly
transmitted through two outgoing leads (�out1,�out2). Dynamics of a wavefunction in these
open networks is described by the discrete nonlinear Schrödinger equation (DNLSE)

i
∂�j

∂t
= −1

2

∑
l

Aj,l�l + �|�j |2�j, (1)

where � represents the strength of cubic nonlinearity. Aij is the adjacency matrix giving the
topology of the network and is defined in a suitable energy unit (say, K) by

Aj,l =
{

1 if j and l are linked
0 otherwise.

(2)

In the case of quantum dots with a common discrete level (CDL) for each, �j(t) is the
wavefunction of the j th dot. The distances between linked lattice sites are fixed to a common
value, say, d with d being of the order of 10–100 nm. K stands for the tunneling matrix element
between connected adjacent dots. CDL is chosen around Fermi energy and prescribed to zero
energy. Time t is in units of h̄/2K and � = U/2K with U being the very weak Hartree term
due to the electron–electron interaction. Firstly we investigate the injection of a wave packet
(WP) through the incoming lead, where DNLSE governs

i
∂�j

∂t
= −1

2
(�j−1 + �j+1) + �|�j |2�j . (3)

Consider, at t = 0, the Gaussian WP centered at ξ0, with initial momentum k0 and width γ0.
In its discrete version the time-dependent WP can be written as

�j(t) =
√

N exp

(−(j − ξ)2

γ 2
+ ik(j − ξ) + i

δ

2
(j − ξ)2

)
, (4)
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Figure 3. Soliton dynamics in the straight ladder with three leads. Time evolution of the spatial
distribution of the positive wavefunction probability: 1 → 2 → (3, 3′) → (4, 4′). k = 5

8 π . Basal
lengths and wave number are scaled by d and d−1, respectively. The schematic plot of the system
‘Ladder + three leads’ in the basal plane. Ladder steps are not depicted for simplicity.

Figure 4. Soliton dynamics in the circular ladder with three leads. Time evolution of the spatial
distribution of the positive wavefunction probability: 1 → 2 → (3, 3′) → (4, 4′). k = 3

5 π . The
same notion on lengths, wave number and ladder steps holds as in figure 3.

where ξ(t) and γ (t), which are scaled by d, are the time-dependent center of mass and width
of the WP, respectively. k(t) and δ(t), which are scaled by d−1 and d−2, respectively, are the
corresponding canonical-conjugate variables.

In the limit γ d � d, WP dynamics can be obtained from an effective Lagrangian

L = kξ̇ − γ 2 δ

8
− �

2
√

πγ 2
+ cos(k)e−η, (5)

from which we have the equations of motion for ξ, k, γ and δ. In order to have a stable WP
(soliton) on incoming leads it should be γ̇ = δ̇ = 0, from which it follows that [4, 8, 9]

�sol ≈ 2
√

π
|cos k|

γ0
. (6)

with π
2 � k(= k0) � π and δ = 0. Under these conditions we present the numerical results of

soliton dynamics colliding with a network in figures 3 and 4. The soliton propagates through
the incoming lead (marked as ‘1’), collides with network (marked as ‘2’), propagates through
network (marked as ‘3’ and ‘3’) and is partially reflected through the incoming lead (marked
as ‘4’) and partially transmitted through two outgoing leads (marked as ‘4’). Transmission
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Figure 5. Comparison T1, T2 and R between equation (7) with use of nonlinear dynamics of a
soliton and equation (11) in the Landauer formula for the time-independent linear Schrödinger
equation. Number of steps in ladder is n = 10. The solid line and ‘+’ for T1, the dashed line and
‘×’ for T2 and the dotted line and ‘∗’ for R. T1 and T2 coincides for the values of k � kc , where
kc = 2/3π . Note: symbols ∗ on the solid line (which is degenerate to the dashed one) for k � kc

are artifacts due to the overlap between the symbols + and ×.

and reflection probabilities (RP) at long enough time after collision with the network can be
calculated as

T1 =
∑

j ∈ outgoing lead 1

|�j |2

T2 =
∑

j ∈ outgoing lead 2

|�j |2 (7)

R =
∑

j ∈ incoming lead

|�j |2.

The result as a function of the incident wave number k (scaled by d−1) is shown in a set of
symbols in figure 5 in the case of the straight ladder with number of steps n = 10 and length
of each external lead m = 250. Here the initial width of the wave packet γ0 = 50 and the
initial center of mass ξ0 = 100. We find that the unitarity T1 + T2 + R = 1 is always satisfied,
namely no fraction of WP remains in the central network at long-enough time. We should
note that the unitarity holds, irrespective of the stability or instability of solitons, i.e. whether
or not the condition in equation (6) is satisfied.

Also, we compare this result with the result based on the Landauer formula [10, 11]
applied to the time-independent linear Schrödinger equation for the ladder network with
N(=2n) lattice sites, which is connected with the semi-infinite incoming lead at ‘0’ site and
two semi-infinite outgoing leads at ‘N + 1’ and ‘N + 2’ sites. In the latter approach, the
outgoing wavefunction � = (�0,�1, . . . , �N+1,�N+2)

T is determined by [12]

� = G�in (8)

for the incoming wavefunction �in = (−Ks[F−1(+) − F−1(−)]�0(+), 0, . . . , 0)T with Ks

and F−1(±) the tunneling and transfer matrices, respectively, in the leads. G is the Green’s
function defined by

G = 1

E − H̃
. (9)
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In equation (9), H̃ is the Hamiltonian which includes the interaction of the network with
external leads [12, 13]:

H̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ṽ0 K∗
0,1 0 · · · 0 0

K0,1
...

...

0 H K∗
N−1,N+1 0

... 0 K∗
N,N+2

0 · · · KN−1,N+1 0 ṼN+1 0

0 · · · 0 KN,N+2 0 ṼN+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

where H is the unperturbed Hamiltonian. Ṽ0, ṼN+1, ṼN+2 and K0,1,KN−1,N+1,KN,N+2 are
respectively the self-energies which renormalize the effect of semi-infinite leads and the
tunneling matrices between the ladder network and leads. Noting that all tunneling matrices
are unity by scaling in the present calculation, we reach the transmission Tj with j = 1, 2 and
reflection probabilities R,

Tj = |〈N + j |G|0〉K∗
s [F−1(+) − F−1(−)]|2 (j = 1, 2),

R = |〈0|G|0〉K∗
s [F−1(+) − F−1(−)] − 1|2. (11)

In figure 5 we compare the results of equation (7) with those of equation (11) in the case of
the ladder with N = 20. Surprisingly two approaches give identical results. The reason is that
the width of the WP employed here is much longer than the linear dimension of the network
and that the nonlinearity plays a small role. Precisely speaking, so far as the soliton is large
enough and fast enough to guarantee that the time of collision between the soliton and ladders
is much shorter than the soliton dispersion time, one may resort to a linear approximation to
compute the transmission coefficients [13]. In the following, therefore, we shall derive T1, T2

and R with the use of equation (11) applied to the linear Schrödinger equation for the ladder.

3. Transmission spectra of a straight ladder

One cannot recognize any universal feature in figure 5 in the case of a ladder with n = 10
steps. However, when n � 10, there appear universal characteristic features independent of
n. In figure 6 transmission and reflection probabilities as a function of the energy (ε) of the
incoming electron are plotted in the case of the straight ladder with n = 50, 100 and 200 steps.
The unitarity T1 + T2 + R = 1 is always satisfied. We find the existence of a critical energy
εc = 0.5 and the remarkable difference of TPs between the lower (0 < ε < εc) and higher
(εc < ε < 1) energy regions. In the lower energy side, T1 and T2 have the anti-phase structure
(i.e. T1 takes peaks whenever T2 has dips and vice versa), and the oscillation period decreases
as ε → εc. In the high energy side, on the other hand, two TPs are degenerate and highly
periodic. All these characteristics hold irrespective of the value of n, so long as the network
is large enough (n � 10). In fact, we obtained the same spectrum in the case of n = 1000 as
in figure 6, while the oscillation period is further shortened in the latter.

The mechanism underlying the above characteristics is explained by using the perturbation
theory. Let us first investigate the nature of the unperturbed long network without three leads,
which can be regarded as a periodic ladder in figure 7. For a pair of upper and lower sites 2m
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Figure 6. Transmission and reflection probabilities as functions of the energy ε. Number of steps
in the ladder is n = 50, 100 and 200 from top to bottom panels, respectively. The solid, dashed
and dotted lines correspond to T1, T2 and R, respectively. T1 and T2 are degenerate for ε � 0.5.
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Figure 7. Unperturbed periodic straight ladder.

Figure 8. Two branches of energy dispersion for the unperturbed ladder. The vertical axis stands
for the energy ε. εu: even-parity branch; εv : odd-parity branch.

and 2m + 1, the wavefunctions satisfy

ε�2m = − 1
2 (�2(m+1) + �2(m−1) + �2m+1),

ε�2m+1 = − 1
2 (�2(m+1)+1 + �2(m−1)+1 + �2m).

(12)

Let us introduce the new basis functions um and vm with the use of the transformation:{
um = 1√

2
(�2m + �2m+1)

vm = 1√
2
(�2m − �2m+1).

(13)

um and vm stand for the even- and odd-parity states in each step, respectively. Using this new
basis, the eigenvalue problem is decoupled, namely, reduced to the even- and odd-parity parts.
Assuming um ∼ eikm and vm ∼ eikm for an infinitely long ladder, we find eigenvalues

εu = −cos(k) − 1
2 εv = −cos(k) + 1

2 . (14)

The even-parity branch εu and odd-parity one εv constitute a pair of energy bands (see
figure 8). It should be noted that while for 0 � ε � εc, both energy branches εu and εv appear,
only the εv branch can survive for ε � εc.

In the presence of the perturbation, namely, in the case of the ladder attached with three
leads in figure 1, um, vm ∼ eikm are no longer the eigenstates: the mixing (superposition)
of states occur within the odd-parity manifold only for ε � εc and between the odd- and
even-parity manifolds for 0 � ε � εc. In the case of ε � εc, therefore, the wavefunction
retains the same feature as the unperturbed state: the coefficients of the wavefunction �2m

and �2m+1 have the identical magnitude. This fact holds at the ladder edge with m = 2n and
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(a)

(b)

(c)

(d)

Figure 9. Missing bonds (A, B) and missing steps (C, D). Each figure shows only six quantum
dots in the midst of the long regular ladder. A(B) corresponds the case that a single bond with
×, which is parallel to the ladder, is missing. Missing bond in (B) is displaced upward from
one in (A) by a lattice constant; C(D) corresponds the case that a single step with ×, which is
perpendicular to the ladder, is missing. Missing step in (D) is displaced to right from one in (C)

by a lattice constant.

m = 2n + 1 as well. Consequently, we see the degeneracy of oscillations for T1 and T2 in
figure 6. On the other hand, in the case of 0 � ε � εc, we see the superposition of um and vm:

αum + βvm = 1√
2
(α + β)�2m + 1√

2
(α − β)�2m+1. (15)

As a result, wherever the coefficient of �2m has a big magnitude, that of �2m+1 has a small
one, and vice versa. This is true even at the ladder edge, explaining the anti-phase oscillation
for T1 and T2 in figure 6.

Thus, the transmission spectra of the straight ladder attached with three leads show a
mixing between different parity states and an anti-phase structure in the output in the lower
energy regime (0 � ε � εc), while, in the higher energy regime (εc � ε � 1), no mixing and
the degenerate periodic structure are seen in the output.

4. Role of defect bonds and topology

One of the most essential questions of quantum networks is whether or not only a single defect
bond introduced into big networks will play a crucial role in quantum transport. Now we
proceed to investigate the influence of a missing bond (MB) embedded in the midst of the
ladder network with N = 100 steps on the quantum transport. The left and right panels in
figure 9 correspond to breaking a bond and step, which are parallel and perpendicular to the
ladder, respectively. The corresponding transmission spectra are given in figures 10 and 11.
Consider the case with a MB in the mid-ladder. For ε > εc, the regular oscillation of T1 and
T2 retains the degeneracy and in-phase structure, but has a period twice as large as the one
without MB. For ε < εc, T1 shows a radical change from the complete transmission (T1 = 1)
to the complete reflection (T1 = 0) and vice versa when the MB moves by a lattice constant,
which can be taken as a switching effect (see figure 10). The issue of a missing step (MS) in
the midst of the ladder is as follows: for ε > εc, besides the period-doubling phenomenon, the
regular oscillation shows a phase shift by half a period when the MS moves by lattice constant
(see figure 11). We should note that so long as a reference MB or MS is embedded in the
midst of big networks, the above discoveries (i.e. period doubling and phase shift for ε > εc,
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Figure 10. Transmission probabilities as functions of energy ε in the case of a single missing bond
(MB). Numbers of steps (n) and of lattice points in the ladder are 100 and 200, respectively. The
upper panel includes T1 (solid line) and T2 (dashed line) in the case where the MB lies between
lattice points 100 and 102 (: case ‘A’ in figure 9). The lower panel includes only T1, and the solid
and dashed lines correspond to cases ‘A’ and ‘B’ in figure 9, respectively. Spectra are degenerate
for ε � 0.5.

and the switching effect for ε < εc) remain unchanged, irrespective of the absolute location of
such a defect bond in figure 9. Thus, an introduction of a single MB or MS into a big network
results in a radical change in the transmission spectra.

In order to see the role of another topology of networks we consider the annular circular
ladder and investigate the twist effect (see figure 12) on quantum transport (see figure 13).

In the case of no twist, the spectra show the same remarkable transition when ε crosses
εc = 0.5 as in the case of the straight ladder. We find that in the lower energy side, T1 and
T2 have the anti-phase structure, and the oscillation period decreases as ε → εc. In the high
energy side, on the other hand, two TPs are degenerate and highly periodic. In the presence
of a single twist (i.e. analog of Möbius strip) the spectra again show a remarkable transition
at εc = 0.5, but the detailed feature differs from the result for the no twist case. See the
great reduction of T1 and T2 in the lower energy region in the single twist case. On the other
hand, in the double twists case the result is identical to that of no twist case. The spectra are
determined by the parity of the winding number (WN). The winding of the circular ladder is
identical to the application of an Aharonov–Bohm flux with the WN multiplied by a half of the
flux quantum φ0

2 = hc
2e

. Thus the topology of networks plays a vital role in quantum transport.

5. Spin–orbit interaction and spin transport

Recent progress in semiconductor spintronics revealed a way of controlling the magnetization
of devices not by a magnetic but by an electric field. The idea is to use the Rashba SOI

10
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Figure 11. The same as figure 10 but in the case of a single missing step (MS). The upper panel
includes T1 (solid line) and T2 (dashed line) in the case where the MS lies between lattice points
100 and 101 (: case ‘C’ in figure 9). The lower panel includes only T1, and the solid and dashed
lines correspond to cases ‘C’ and ‘D’ in figure 9, respectively.

Figure 12. Twisted annular circle. ‘×’ means the disconnection, h + 1 and h + 2 (likewise, h and
h + 3) are connected.

[14–17] whose strength is tuned by the external gate voltage. In this section, by introducing
the SOI into the network, we investigate STP (spin-dependent transport) as well as charge
transport (CTP). According to the pioneering work of Datta and Das [11, 18, 19], we first
consider the STP for the spin-polarized injection. The network Hamiltonian generalized so as
to include the Rashba SOI is given by

−1

2

∑
l

Aj,l�l + α(σ × p)z�j = ε�j , (16)
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(a)

(b)

(c)

Figure 13. Transmission probabilities as functions of the energy ε (solid for T1 and dashed for
T2). Three cases of twisted circles: (a) no twist; (b) a single twist and (c) double twists. Spectra
are degenerate for ε > εc , though no bold line appears.

with �j ≡ (φj,↑, φj,↓)T the two component wavefunction, α = − eh̄
4m2c2K

Ez the strength of the
Rashba SOI in the case of an vertically applied electric field and σ stands for Pauli matrices.
In equation (16), energy is scaled by the tunneling matrix element K. For convenience in our
numerical calculation, we introduced dual ladders to assign each of them to up- and down-spin
states, respectively (see figure 14). The STP is quantified as T

spin
1,2 = T1,2(↑)− T1,2(↓) and the

CTP as T
charge

1,2 = T1,2(↑) + T1,2(↓).
In figure 15 the STP as functions of energy is plotted for different values of the strength

of the Rashba SOI α. We consider the spin-polarized
(
Sz = + 1

2

)
injection. In the absence

of spin–orbit interaction the STP T
spin

1 , T
spin

2 as functions of ε show the same spectra as
in the case of CTP T1, T2 (see figure 6), because we have no contribution from T1,2(↓).
Against the variation of SOI, the STP shows spin-flip (magnetization reversal) oscillations (see
figure 15), while keeping the anti-phase structure of T

spin
1 and T

spin
2 in the range ε < εc(=0.5).

Against the variation of SOI, by contrast, the CTP keeps the spectral feature without SOI (see
figure 6).

Finally we shall investigate the most interesting subject, namely the STP in network
systems with SOI for the injection of the spin-unpolarized electron. Figure 16 shows T

spin
1

and T
spin

2 as functions of ε for non-zero values of α. Astonishingly we find T
spin

1 = −T
spin

2 for
any value of ε in the case of α �= 0. This discovery indicates that a straight ladder with three
leads plays a role of the spin filtering, i.e. the unpolarized electron is decomposed into mostly

12
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Figure 14. Spinor ladders. For computational purpose, dual ladders are introduced with each
corresponding to spin-up and spin-down states.
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Figure 15. Spin transport T
spin

1 (solid) and T
spin

2 (dashed) for different values of spin–orbit
interaction in the case of spin-polarized injection. The panels from top to bottom correspond to
α = 0.0, 0.12 and 0.18, respectively.
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Figure 16. The same spin transport T
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1 (solid) and T
spin

2 (dashed) as in figure 12, but in the case
of spin-unpolarized injection. The panels from top to bottom correspond to α = 0.1, 0.12 and
0.46, respectively.

spin-up and mostly spin-down components through its transport in the ladder. In the context
of nanoscience, this is the most essential issue among many other discoveries in the present
work.

6. Summary and discussions

Choosing straight and circular ladders as large network models and attaching them with one
incoming and two outgoing semi-infinite leads, we examined the quantum transport of an
electron or phase soliton. In the beginning, by adding a small cubic nonlinearity (e.g. Hartree
term) to the discrete time-dependent linear Schrödinger equation, we showed how the incoming
soliton bifurcates at the entrance of the ladder-type network and is ultimately evacuated from
the network through three leads.
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We chose a soliton large enough and fast enough to guarantee the time of collision
between the soliton and ladders to be much shorter than the soliton dispersion time. On the
basis of this soliton picture, two transmission probabilities (T1,2) and a reflection probability
(R) were evaluated, which proved to accord with the corresponding probabilities obtained
from the linear methodology, i.e. Landauer formula applied to the time-independent linear
Schrödinger equation. The main part of the paper was then devoted to the results of the latter
(linear) methodology. Firstly we investigated T1, T2 as functions of the energy ε of the incident
electron. Both probabilities show a transition from anti-phase aperiodic to degenerate periodic
spectra at the critical energy εc = 0.5, whose value is determined by a bifurcation point of
the bulk energy dispersions. TPs of the circular ladder depend only on the parity of the WN,
because the WN plays a role of an Aharonov–Bohm flux with its magnitude being a half of
flux quantum multiplied by the WN.

The introduction of a single defect bond into big networks radically changes the
macroscopic transport spectra. A MB parallel to the ladder in the network doubles period of
the periodic spectra for ε > εc. For ε < εc, the shift of a single MB by a lattice constant
results in the switching between two outgoing leads. An MS leads to a phase shift besides the
period doubling for ε > εc.

Finally, by introducing the electric-field-induced Rashba SOI, we explored the STP(
T

spin
1 , T

spin
2

)
for the spin-polarized injection. At zero SOI, T

spin
1 and T

spin
2 as functions

of ε show the same spectra as in the case of CTP. Against a variation of SOI, however, this
structure shows a coherent spin-flip (magnetization reversal) oscillations. On the other hand,
the injection of the spin-unpolarized electron leads to the spin filtering, namely, the unpolarized
electron is decomposed spatially into mostly spin-up and mostly spin-down components
through its transport in the ladder. Therefore the present network can be used as a spin-
filtering device. This is the most striking issue of this paper. The present results would also
be applicable to the propagation of a wide-enough soliton in Josephson junction networks and
of a wave packet in Bose–Einstein condensates in optical-lattice networks, although the linear
and static approximation will break down and the transport would be highly nonlinear and
more generic.
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